20^2=x(x+x-6)

Simple and best practice solution for 20^2=x(x+x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20^2=x(x+x-6) equation:



20^2=x(x+x-6)
We move all terms to the left:
20^2-(x(x+x-6))=0
We add all the numbers together, and all the variables
-(x(2x-6))+20^2=0
We add all the numbers together, and all the variables
-(x(2x-6))+400=0
We calculate terms in parentheses: -(x(2x-6)), so:
x(2x-6)
We multiply parentheses
2x^2-6x
Back to the equation:
-(2x^2-6x)
We get rid of parentheses
-2x^2+6x+400=0
a = -2; b = 6; c = +400;
Δ = b2-4ac
Δ = 62-4·(-2)·400
Δ = 3236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3236}=\sqrt{4*809}=\sqrt{4}*\sqrt{809}=2\sqrt{809}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{809}}{2*-2}=\frac{-6-2\sqrt{809}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{809}}{2*-2}=\frac{-6+2\sqrt{809}}{-4} $

See similar equations:

| 7-n=1.3 | | 3.9x=15.6 | | -20=4(x-5) | | 4(-4-8m)+28m+4=-272 | | 5n-11=-76 | | 4x+9=5x-12 | | 2.24x=1-x | | 3298=34(p+35) | | 4-3n=49 | | 3x-3(4x-8)=7-(5-2x) | | 1525=25(p+10) | | (4-z)(3z+5)=0 | | 2x(2)+4=22 | | 3x(2-x)+4=5-(3x-10) | | 5x+18=7x-34 | | 5/7m+3=4 | | 315=25+5x | | x62+8x=5 | | 2=10*0.3t | | 15(21)=5(5+x) | | -(-6)-8=-(1+n) | | -5x^2=200 | | 11x+5=-5+12x= | | (8x)(4,9x)=84 | | 7+12x=6x+11= | | 315=5x+x^2 | | 9x+10=16x-5 | | -3/x=9/10 | | x(0)=0 | | 9x-2=8x+6= | | y/4=7/11 | | (x-6)(x+2)=0. |

Equations solver categories